
Parameterization of vegetation backscatter in radar-based,

soil moisture estimation

Rajat Bindlisha, Ana P. Barrosb,*
aSSAI, USDA/ARS Hydrology Laboratory, Beltsville, MD, USA

bDivision of Engineering and Applied Sciences, Harvard University, 118 Pierce Hall, 29 Oxford Street, Cambridge, MA 02138, USA

Received 22 May 2000; accepted 28 October 2000

Abstract

The Integral Equation Model (IEM) was previously used in conjunction with an inversion model to retrieve soil moisture using

multifrequency and multipolarization data from Spaceborne Imaging Radar C-band (SIR-C) and X-band Synthetic Aperture Radar (X-SAR).

Convergence rates well above 90%, and small RMS errors were attained, for both vegetated and bare soil areas, using radar data collected

during Washita 1994. However, the IEM was originally developed to describe the scattering from bare soil surfaces only, and, therefore,

vegetation backscatter effects are not explicitly incorporated in the model. In this study, the problem is addressed by introducing a simple,

semiempirical, vegetation scattering parameterization to the multifrequency, soil moisture inversion algorithm. The parameterization was

formulated in the framework of the water±cloud model and relies on the concept of a land-cover (land-use)-based dimensionless vegetation

correlation length to represent the spatial variability of vegetation across the landscape and radar-shadow effects (vegetation layovers). An

application of the modified inversion model to the Washita 1994 data lead to a decrease of 32% in the RMSE, while the correlation

coefficient between ground-based and SAR-derived soil moisture estimates improved from 0.84 to 0.95. D 2001 Elsevier Science Inc. All

rights reserved.
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1. Introduction

Previously, Bindlish and Barros (2000) used the Integral

Equation Model (IEM) developed by Fung, Li, and Chen

(1992) in conjunction with an inversion algorithm to

retrieve soil moisture using multifrequency and multipolar-

ization data from Spaceborne Imaging Radar C-band (SIR-

C) and X-band Synthetic Aperture Radar (X-SAR). The

RMS error in the estimated soil moisture was of the order of

0.05 cm3/cm3 for data collected during the Washita 1994

experiment (Starks & Humes, 1996), which is comparable

to the effect of noise in the SAR data.

The original IEM model was, however, developed for

bare soil conditions only, and although the retrieval algo-

rithm performed well even for vegetated areas (convergence

rates were well above 90%), a valid concern is whether it

would be equally successful when dense vegetation is

present. Vegetation canopies complicate the retrieval of

moisture in the underlying soil, because the canopies con-

tain moisture of their own. Thus, the retrieved surface water

content corresponds to the combined signatures of vegeta-

tion and soil water. Due to multiple scattering effects, the

interaction between the two contributions and the observed

backscatter is highly nonlinear. The key research question

is, therefore, how to separate the contribution of vegetation

backscatter and absorption from that of soil moisture.

Use of remote sensing techniques in the optical domain

(visible and shortwave infrared) to monitor vegetation

canopies over space and time has been well-documented

in the literature (Asrar, Kanemasu, Jackson, & Pinter, 1985;

Sellers, 1985; Tucker, Vanpraet, Sharman, & Van Ittersum,

1985). Cloud cover, however, strongly limits the number of

available optical images. In addition, these techniques are

limited by the observed saturation of the observed signal

with increasing biomass.

Radar provides a useful tool for assessing biomass, since

it is unaffected by cloud cover or low solar zenith angles
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(a potentially significant problem at high latitudes). The

backscatter from vegetation canopies is determined by many

factors including: (1) the dielectric constant of the vegeta-

tion material, which is strongly influenced by moisture

content; (2) the size distribution of the scatters in a canopy;

(3) the shape distribution of the scatterers in a canopy; (4)

the orientation distribution of the scatterers in a canopy; (5)

the canopy cover's geometry (row direction and spacing,

cover fraction, etc.); and (6) the roughness and dielectric

constant of the underlying soil surface. At higher viewing

angles, the backscattering contribution of the canopy

increases and is dominated by the return from vertically

aligned stalks and cobs where they exist, whereas the

canopy loss component is dominated by the leaves (Ulaby,

Moore, & Fung, 1986).

In the context of radar applications, backscatter at high

frequencies (C- and X-bands) will be dominated by scatter-

ing processes in the crown layer of branches and foliage

in the canopy, whereas backscatter at lower frequencies

(P- and L-bands) is dominated by scattering processes

involving major woody biomass components (trunks and

branches) (Imhoff, 1995; McDonald, Dobson, & Ulaby,

1991; Ulaby, Sarabandi, McDonald, Whitt, & Dobson,

1990). Cimino, Casey, Rabassa, and Wall (1986) and Wu

(1987) demonstrated that SAR data can be used to dis-

criminate different forest types, and that the intensity in a

SAR image at L-band is proportional to the aboveground

biomass of the forest stands.

For soil moisture retrieval, the sensitivity of the radar

backscatter signal is significantly higher at lower frequen-

cies (Fung, 1994; Ulaby et al., 1986), whereas at higher

frequencies, the signal is more sensitive to vegetation

(Prevot et al., 1993; Ulaby et al., 1986). A combination

of high- and low-frequency SAR data was used by Prevot et

al. (1993) and Taconet et al. (1994) to improve the estima-

tion of soil moisture. These studies suggested that the

vegetation scattering for low-frequency SAR data was

important only when vegetation density was high. More-

over, in humid environments, the soil moisture is also high,

and so is its contribution to the observed backscatter. The

contribution of vegetation in the scattering process is

significantly smaller than that of soil in areas of sparse

vegetation, and in principle, the vegetation scattering can be

neglected. In arid and semiarid regions, however, soil

moisture content rarely exceeds 20%, and, thus, the soil

contribution may be small or approximately the same in

magnitude as the vegetation contribution.

The objective of this work is to present a parameteriza-

tion of vegetation backscatter effects to be used in the

multifrequency, multipolarization application of the IEM

in soil moisture retrieval (Bindlish & Barros, 2000; Fung

et al., 1992). A short review of existing approaches to model

vegetation backscatter is presented next, followed by a

description of the proposed parameterization. The utility

of the parameterization is tested through the application of

SAR data from the Washita 1994 field experiment.

2. Current approaches to modeling backscatter from

vegetation canopies

For modeling backscatter from vegetation canopies

using radar data, a common approach is to first develop

direct models simulating the backscattering coefficient of a

canopy with known characteristics. These models can

subsequently be used in inverse mode to estimate the

characteristics of other canopies. Examples of direct mod-

eling approaches relevant to this work are reviewed next.

We group them in three general classes of models: empiri-

cal, theoretical, and semiempirical.

2.1. Empirical models

Generally, empirical models have been developed for a

single plant structural type (i.e., monospecies plant popula-

tion) based on the increase of the radar backscattering

coefficient (so at frequency band f, polarization p, and

incidence angle q) with biomass according to a power-law

relationship in observational data (Ulaby et al., 1986). The

backscatter becomes insensitive to increases with biomass at

a threshold level (the saturation level), which scales with the

wavelength for each species. The HV- and HH-polarized

backscatters are found to be the most sensitive to vegetation

and hence yield the highest correlations, while the VV-

polarized backscatter tends to saturate at lower levels of

NDVI. These saturation points define the upper limits for

accurate estimation of forest biomass in the case of single

frequency and single polarization data (Dobson et al., 1995;

Imhoff, 1995). When multifrequency, multipolarization data

are available, the range of biomass estimation can be

extended beyond that imposed by the `̀ apparent'' saturation

of a single frequency, single polarization configuration

using, for example, polarization ratios (Dobson et al.,

1992, 1995; Imhoff, 1995; Pierce, Dobson, Wilcox, &

Ulaby, 1993; Ranson & Sun, 1994).

2.2. Theoretical models

In theoretical models of radar scattering, the vegetation

canopy is normally treated as a uniform layer of some

specified height containing a random distribution of scat-

terers (Attema & Ulaby, 1978; Eom & Fung, 1984; Fung

& Ulaby, 1978; Karam & Fung, 1988; Lang & Sidhu,

1983; Tsang & Kong, 1981). Vegetation can be described

as a discrete or as a continuous medium. The discrete

model approach for a random layer of vegetation was first

used by Du and Peake (1969) to compute the attenuation

through a layer of leaves. Later, Karam and Fung (1983),

Lang (1981), and Ulaby et al. (1990) have used the

approach to develop more rigorous theoretical models

for backscatter from a layer of vegetation over the soil

surface. The advantage of the discrete approach is that the

results are expressed in terms of quantities such as plant

geometry and orientation statistics that are easily related to
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the biophysical properties of individual plants and can be

measured objectively.

Critical limitations in existing theoretical scattering mo-

dels relate to the assumptions made with regard to the

characteristics of the scatterers (Eom & Fung, 1986; Fung,

Chen, & Li, 1987; Karam & Fung, 1983, 1988; Lang &

Sidhu, 1983; McDonald et al., 1991) or the applicable

frequency (Karam & Fung, 1983; Le Vine, Schneider, Lang,

& Carter, 1985). Some models account only for leaves but

not branches (Eom & Fung, 1986; Fung et al., 1987; Karam

& Fung, 1983; Lang & Sidhu, 1983), while others treat

branches and the soil surface but not the leaves (Karam &

Fung, 1988). In all these models, the scatterers are

embedded in one layer above the soil surface or a half-

space medium. Ulaby et al. (1990) proposed a two-layer

physical model based on the first-order solution of the

radiative transfer theory, which was subsequently used by

McDonald et al. (1991) to model multiangular and temporal

backscatter. Yueh, Kong, Jao, Shin, and LeToan (1992)

showed that it is necessary for theoretical models to take

into account the architecture of vegetation, which plays an

important role in determining the observed coherent effects.

Two major challenges are encountered when modeling

the backscatter behavior of a vegetation canopy. The first

relates to the difficulties in specifying model parameters

that adequately describe the canopy. The second relates to

the mathematical complexity in resolving the inverse

problem due to the large number of variables and para-

meters, which makes their inversion difficult (Lang &

Sahel, 1985). However, the scattering process involves a

certain amount of averaging as a result of the multiple

scattering and the quasi-randomness of the locations, sizes,

and orientations of the scatterers. This averaging effect,

together with specific information about the attenuation

properties of a given canopy constituent, makes it possible

to make assumptions that simplify the scattering models in

terms of physical vegetation parameters. This is the moti-

vation for the semiempirical models.

2.3. Semiempirical models

In order to circumvent these problems, a simpler

approach, based on the so-called water±cloud model,

was developed first by Attema and Ulaby (1978), who

proposed to represent the canopy in a radiative transfer

model as a uniform cloud whose spherical droplets are

held in place structurally by dry matter. The original model

was subsequently modified or extended by various authors

(Hoekman, Krul, & Attema, 1982; Paris, 1986; Ulaby,

Allen, Eger, & Kanemasu, 1984). In water±cloud models,

the canopy is represented by `̀ bulk'' variables such as leaf-

area index (LAI) or total water content, and because of the

parsimonious use of parameters, these models can be

easily inverted; they are, therefore, good candidates for

use in retrieval algorithms (Bouman, 1991). The water±

cloud type models are referred to as semiempirical,

because model parameters must be derived from (i.e.,

fitted to) experimental data.

Basic conceptual assumptions in the water±cloud model

include: (1) The vegetation is represented as a homoge-

neous horizontal cloud of identical water spheres, uniformly

distributed throughout the space defined by the soil surface

and the vegetation height. (2) Multiple scattering between

canopy and soil can be neglected. (3) The only significant

variables are the height of the canopy layer and the cloud

density, the latter assumed to be proportional to the volu-

metric water content of the canopy. In this context, radar

backscattering from a canopy can be expressed as the sum

of contributions due to (i) volume scattering in the canopy

itself, (ii) surface scattering by the underlying ground sur-

face, and (iii) multiple interactions involving both the

canopy and the ground surface. The water±cloud models

represent the power backscattered by the whole canopy so

as the incoherent sum of the contribution of the vegetation

sveg
o and the contribution of the underlying soil ssoil

o , which

is attenuated by the vegetation layer. For a given incidence

angle q, the backscatter coefficient is represented in water±

cloud models by the general form:

so � so
canopy � so

canopy� soil � t2so
soil �1�

where t2 is the two-way vegetation transmissivity. The first

term represents the scattering due to the vegetation canopy,

the second term represents the interaction between the

vegetation canopy and the soil underneath and accounts for

multiple scattering effects, and the third term represents the

scattering from the soil layer. The vegetation±soil interac-

tions are neglected in the water±cloud model, and, therefore,

so � so
veg � t2so

soil �2�
with

t2 � exp�ÿ2Bmvsecq� �3�
and

so
veg � Amvcosq�1ÿ t2� �4�

where mv is the vegetation water content (kg/m2). A and B

are parameters depending on the canopy type. The constant A

is the maximum allowable attenuation from the vegetation

canopy (both cosq and [1ÿ t2] are less than 1). Thus, A can

be interpreted as a vegetation density parameter (0 for bare

soil, a very high value for evergreen forests). This

formulation corresponds to the first-order solution of

radiative transfer equation through a weak medium, where

multiple scattering effects can be neglected.

The variations in the canopy descriptors used in the

models that describe canopy backscattering are due to the

complexity of vegetation structure and to the relative sim-

plicity of the models: There is no general theoretical basis to

define the best set of canopy descriptors, and consequently,

to derive the values of the A and B parameters. Furthermore,

for a given canopy, strong functional relationships exist
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between these canopy descriptors. As a matter of fact, the

geometrical structure of the canopy is implicitly accounted

for through these parameters A and B, which are always

determined by fitting the models against experimental data

sets. The maximum backscatter attenuation reported in the

literature is about 3 dB (deciduous forests, Ulaby et al.,

1986). One would expect vegetation attenuation from tropi-

cal rain forests and dense evergreen forests to be higher, and,

thus, the applicability of the water±cloud model for such

applications requires further evaluation.

In order to account for possible heterogeneity of canopies

due to the existence of vertical variations or different types

of scatterers (leaves, stems, etc.), multilayer or multicompo-

nent water±cloud models were also developed, yet, without

significant improvement in the results (Bernard, Frezal,

Vidal-Madjar, Guyon, & Riom, 1987; Hoekman et al.,

1982; Ulaby et al., 1984).

One approach that has provided encouraging results is the

use of multifrequency data in the water±cloud model. This

approach is based on the premise that such data and

combinations thereof are sensitive to different components

of the vegetation canopy. Various authors including Bou-

man (1991), Hoekman et al. (1982), and Ulaby et al. (1984)

stressed, however, the strong sensitivity of the parameters in

the water±cloud models to small changes in land-cover. This

restricts the generalized use of the approach, because the

sensitivity of the parameters to changes in canopy structure

will also affect the robustness of the inversion scheme.

Although it is almost certainly impossible to define a

universal semiempirical inversion algorithm, in principle, it

should be possible to develop one for each class of vegeta-

tion as defined by geometric structure. This was the motiva-

tion for this study, and a parameterization of vegetation

backscatter is proposed next, which attempts to account for

effects of geometric structure and spatial variability.

3. Vegetation backscattering parameterization

The backscattering coefficient of the canopy is inter-

preted here in the framework of semiempirical water±cloud

models: (1) Both the canopy loss and the vegetation volume

scattering coefficient are linked to the canopy's biophysical

properties, and especially, but not exclusively, to canopy

type, canopy structure, and the water volume fraction

within the canopy. (2) The canopy loss and the volume

scattering coefficient increase with frequency. (3) The

vegetation term tends to dominate the net return as either

frequency or incidence angle increases. (4) The interactive

term functions to enhance radar sensitivity to the moisture

contained in the soil beneath a vegetation canopy.

In the classic water±cloud model, the backscattering in

the presence of vegetation is approximated as a combination

of the individual backscatter from the vegetation canopy and

the underlying soil layer as given by Eq. (2). As mentioned

previously, the orientation and geometry of the vegetation

are key governing factors for vegetation backscatter.

Furthermore, it is possible that two or more tree canopies

overlap and are caught in the same radar beam. Layover

occurs when one or more canopies of different heights are

located at the same range distance, and the vegetation

backscatter from one is affected by the other and vice versa.

In this case, the standard water±cloud model will account

for scattering of the same beam by two different trees, which

could lead to overestimating the vegetation backscatter

where canopy layover occurs. This effect is referred here-

after as radar-shadow effect.

3.1. Radar-shadow effect

As reviewed earlier, the linear dependence of so (Eq. (1))

on forest biomass has been found to decrease with frequency

as scattering and attenuation by the crown layer of foliage

and small branches become more significant. In particular,

the polarizations most sensitive to specular scattering

mechanisms by the trunk and ground surface (HH and

HV) show the highest sensitivity to biomass, whereas the

linear dependence of so on biomass tends to saturate at

biomass levels which scale with wavelength (Dobson et al.,

1992). Sun and Ranson (1995) showed that cross-polariza-

tion signatures are more sensitive to the crown structure than

the like-polarization signatures. Specifically, the ratio of HV

backscattering from a longer wavelength (P or L) to that

from a shorter wavelength (C) appears to be a good combi-

nation for mapping forest biomass. This ratio enhances the

correlation of the image signature with the standing biomass,

and compensates for part of the variations in backscattering

attributed to radar incidence angle (Sun & Ranson, 1995).

The relationship between backscatter and biomass is

investigated next using the Washita 1994 data for the Little

Washita watershed in southwest Oklahoma. During the

experiment, the land was covered by rangeland, pasture,

winter wheat, corn, and alfalfa. A complete description of the

watershed is available in Allen and Naney (1991) or Starks

and Humes (1996). The radar data consist of 6 days of SIR-

C/X-SAR data in three different bands and different polar-

izations: L-band (23.5 cm), C-band (5.8 cm), and X-band

(3.1 cm). NDVI was used as a quantitative proxy of bio-

mass. Table 1, which is replicated from Bindlish and Barros

(2000), provides a description of the data collected during

Washita 1994. Further details can be found in Jackson et al.

(1996). Table 2 shows the values of correlation coefficients

between backscatter and NDVI for different frequencies and

polarizations, and for different land-use classes, using both

linear and exponential approximations. Note that the corre-

lation coefficient increases to 0.5 (maximum value of 1.6)

from around 0.3 (maximum value of 0.4), when an expo-

nential function is used instead of a linear relationship. As

expected, there is also a substantial difference between the

values obtained when cross-polarizations are used.

According to these empirical results, we propose an

exponential vegetation correlation function to model the
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effect of `̀ radar shadow,'' or vegetation layover. The geo-

metric effect of vegetation spacing can be accounted for by

introducing the concept of dimensionless vegetation corre-

lation length, which is a function of the distance at which

the plants function as independent scatterers. The vegetation

correlation length can be interpreted as a bulk measure of

the effects of the shape, size, and spatial distribution of

individual plant canopies. Hence, it varies with plant type,

stage of growth, and in general, with the 3D architectural

layout of vegetation in the landscape. Formally, the effect of

vegetation layover is described as follows:

so�
veg � so

veg�1ÿ exp�ÿa�� �5�
where sveg

o* is the corrected vegetation contribution, and a is

the radar-shadow coefficient (a� 0). The radar-shadow

coefficient (or dimensionless vegetation correlation length

a = Lveg/L) should vary with vegetation type and with land-

use and/or the spatial variability of land-cover in the

landscape. The dimensionless vegetation correlation length

used here is conceptually similar to the surface correlation

length for soils used in the IEM (Fung et al., 1992). The

characteristic length scale L is the field scale at which

representative ground measurements are available. Accord-

ingly, Eq. (2) must be modified to reflect the explicit

representation of the radar-shadow effect:

so � so�
veg � t2so

soil �6�

3.2. Parameter estimation

To estimate the three vegetation parameters A, B, and a,

the IEM model (Fung et al., 1992) is used first in the

forward mode to calculate `̀ bare-soil'' backscatter coeffi-

cients ssoil
o at locations where ground-based measurements

of soil moisture and other ancillary data are available. The

ratio between the measured backscatter coefficients so and

ssoil
o is the vegetation transmissivity t2. Subsequently, the

value of B can be calculated directly from Eq. (3), and sveg
o

can be obtained from Eq. (2). The parameters A and a are

obtained from Eqs. (5) and (6), where sveg
o is replaced by

the right-hand side of Eq. (4). When data exist at multiple

sites, Least Mean Squares (LMS) regression analysis is

necessary to include data from all locations.

In principle, if multifrequency data are available, dif-

ferent values of A, B, and a can be derived for each

frequency. For the application presented here, we calculate

independently of the frequency, only one set of parameters

for each vegetation category. The relative weight of

different frequencies in the regression analysis is deter-

mined according to Ulaby et al. (1986), who showed that

the combined effects of volume scattering in the water±

cloud model and the geometric scattering vary approxi-

mately as f 2, which is (Eq. (7)):

so�
veg / f 2 �7�

One of the advantages of this approach is that all the

vegetation parameters (A, B, and a) can be defined using

ancillary data. Thus, it should be possible to use this

parameterization for operational soil moisture monitoring.

4. Application

The multifrequency, multipolarization inversion model

based on the IEM used by Bindlish and Barros (2000) was

modified by introducing the vegetation backscatter parame-

terization proposed above, and the Washita 1994 soil moist-

ure inversion application described therein was repeated.

4.1. Specification of vegetation parameters

First, the IEM was run in the forward mode to estimate

the independent backscatter contribution from the soil (see

Table 2

Regression constants for linear and exponential fits to the empirical

relationship between backscatter coefficient and NDVI for the Washita

1994 study area

Frequency
Rangeland Winter wheat Pasture

and

polarization Linear

Expo-

nential Linear

Expo-

nential Linear

Expo-

nential

CHH 0.23 0.45 0.26 0.48 0.24 0.40

CHV 0.26 0.48 0.28 0.52 0.25 0.42

LHV 0.21 0.41 0.22 0.46 0.19 0.32

LHH 0.25 0.56 0.25 0.51 0.22 0.39

LVV 0.18 0.38 0.20 0.42 0.23 0.41

CHH/LHH 0.30 0.56 0.32 0.58 0.28 0.53

CHH/LHV 0.33 0.58 0.36 0.61 0.28 0.52

CHV/LHV 0.33 0.59 0.34 0.55 0.31 0.56

CHV/LHH 0.29 0.55 0.36 0.62 0.29 0.50

Table 1

Daily specification of the SIR-C/X-SAR data for Washita 1994

Day

(April 1994)

Flight

direction

Incidence

angle (°)

Bands and

polarizations

11 A 28.0 LHH, LVV, LHV, CHH, CVV,

CHV, XVV

12 A 42.3 LHH, LVV, LHV, CHH, CVV,

CHV, XVV

13 A 50.1 LHH, LVV, LHV, CHH, CVV,

CHV, XVV

14 A 56.3 LHH, LHV, CHH, CHV, XVV

14 D 48.3 LHH, LHV, CHH, CHV, XVV

15 A 60.2 LHH, LVV, LHV, CHH, CVV,

CHV

15 D 42.4 LHH, LVV, LHV, CHH, CVV,

CHV, XVV

16 D 36.2 LHH, LVV, LHV, CHH, CVV,

CHV, XVV

17 D 30.9 LHH, LVV, LHV, CHH, CVV,

CHV

18 D 26.5 LHH, LVV, LHV, CHH, CVV,

CHV, XVV

A= ascending pass; D = descending pass.
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right-hand side of Eq. (2)) at each site where gravimetric

soil moisture experiments were conducted during Washita

1994 (15 sites in all, Table 3). The vegetation parameters

A, B, and a were subsequently derived as described

above. Table 4 shows the values of the vegetation con-

stants when all land used are lumped together and sepa-

rately for the sites where both ground-based measurements

of soil moisture and vegetation were available. Three

different land-use classes (rangeland, winter wheat, and

pasture) fell in the latter category (12 of the 15 sampling

sites in Table 3). Finally, the full inversion model was run

to estimate the soil moisture fields for all 6 days during

Washita 1994. Two different experiments were conducted:

In the first case, the vegetation parameters were specified

without taking into consideration the land-use class of

each pixel, and, thus, only one value of each parameter is

used for the entire area (first column in Table 4). In the

second case, the land-use specific parameters were used

whenever the pixel fell in one of the three categories

(winter wheat, pasture, and rangeland), and the average

values were used elsewhere.

In the first experiment, the use of the explicit para-

meterization of vegetation backscatter in the soil moisture

inversion resulted in a small increase (� 5%) in the

correlation coefficient between retrieved and measured

soil moisture: R=.87 as compared to R=.83, obtained by

Bindlish and Barros (2000), when no vegetation correc-

tion was used. Fig. 1 shows the scatter plot of measured

vs. retrieved soil moisture with and without using the

explicit vegetation parameterization, with only one set of

parameters (A, B, a) identical for all vegetation and land-

use types.

The use of common vegetation parameters for the

entire study area does not allow the model to differentiate

between various vegetation canopies, and, thus, the geo-

metric effect of canopy structure and spatial layout of

individual canopies (here assumed to be a function of

land-use) was not accounted for. However, in the second

experiment, the correlation coefficient improved up to

0.95 (see Fig. 2), which corresponds to a decrease of

about 32% in the average RMSE for this application.

That is, by introducing land-use class in the determination

of the vegetation parameters, a substantial skill improve-

ment was achieved in describing the specific structural

features of vegetation associated with dampening of sur-

face backscatter.

Note that, for this case-study, the maximum vegetation

amount anywhere in the watershed was moderate (less

than 2 kg/m2, Table 3). None of the sampling sites had

dense vegetation, which is true for most of the watershed.

The saturation levels reported by Imhoff (1995) were as

follows: C-band� 2 kg/m2, L-band� 4 kg/m2, and P-

band� 10 kg/m2. Thus, none of the sampling sites was

above the saturation level for C-band, and all sites were

well below the L-band saturation levels. This could be

one of the reasons for the success of this parameteriza-

tion. The current model must, therefore, be tested under

more diverse conditions in order to perform a compre-

Table 3

Site characterization for Washita 1994 April mission

Site

Vegetation water

content (g/m2)

Surface

roughness (cm) Land cover

11 1798 0.81 Alfalfa

12 0 3.43 Bare soil

13 1386 0.81 Winter wheat

14 96 0.73 Rangeland

21 78 0.87 Rangeland

22 107 0.67 Rangeland

23 65 1.31 Rangeland

31 797 0.99 Winter wheat

32 1933 0.56 Winter wheat

33 1916 0.85 Winter wheat

34 103 0.49 Pasture

53 797 1.18 Winter wheat

54 86 0.76 Pasture

55 817 0.73 Winter wheat

71 0 0.55 Bare soil

Table 4

Values of vegetation parameters used in the semiempirical model

All land-uses Rangeland Winter wheat Pasture

A 0.0012 0.0009 0.0018 0.0014

B 0.091 0.032 0.138 0.084

a 2.12 1.87 10.6 1.29

Fig. 1. Scatter plot of measured volumetric soil moisture and estimated

volumetric soil moisture for all the sampling sites for the entire duration of

the Washita 1994 experiment using the vegetation parameterization with

the same set of parameters (A, B, a) for all land-use types (first column in

Table 4).
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hensive evaluation of its effective skill to `̀ see through''

dense vegetation.

In principle, the land-use-class-based approach

requires separate empirical relationships for each vegeta-

tion type, and, thus, the need to carry out large-scale

vegetation characterization studies such as those con-

ducted for field experiments like Washita 1994. Long-

term field measurements of vegetation parameters at pilot

sites are needed, since these parameters will change with

both natural and anthropogenic vegetation changes. How-

ever, given that reliable land-use/land-cover maps are

available (or can be generated from remotely sensed

imagery in the visible portion of the spectrum) at time-

scales consistent with local vegetation changes, the

parameter specification problem can be resolved with

an adaptive algorithm to adjust the parameters as dictated

by sequential changes in the remotely sensed multifre-

quency radar data.

5. Summary

The objective of this work was to formulate and test an

explicit parameterization of vegetation backscatter effects

in the retrieval of soil moisture from radar data. The

solution proposed was patterned after the water±cloud

model and modified by introducing a semiempirical para-

meterization to account for radar-shadow effects. The use

of this explicit vegetation parameterization in a multi-

frequency, radar-based, soil moisture retrieval model

improved significantly the soil moisture retrieval for vege-

tated pixels during Washita 1994.

Two different experiments were conducted for coupling

the water±cloud model with the multifrequency, radar-

based, soil moisture estimation algorithm. In the first

approach, the effect of vegetation-specific structure was

neglected, and the results obtained were only marginally

better than those reported by Bindlish and Barros (2000).

However, the results were significantly better when land-use

class was introduced explicitly in the specification of

vegetation parameters. This is consistent with the notion

that vegetation density and water content are not sufficient

to represent vegetation backscattering effects, and, there-

fore, some measure of the spatial variability and architec-

tural layout of vegetation is required (see, for example, Yueh

et al., 1992). Thus, the dimensionless vegetation correlation

length can be viewed as a first-order bulk measure of the

geometric backscatter effects of the prevailing characteristic

spatial scales of land-use/land-cover classes in the landscape

(e.g., compare a for winter wheat with that for pasture and

rangeland in Table 4). Although encouraging, this proposi-

tion and the utility of the vegetation correlation length

concept must be further investigated in forests and densely

vegetated areas, and in environments and climatic regions

where the spatial and temporal variability of vegetation are

markedly strong.
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